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The phenomenological universalities (PU) are extended to include quantum oscillatory phenomena, 
coherence and supersymmetry. It will be proved that this approach generates minimum uncertainty 
coherent states of time-dependent oscillators, which in the dissociation (classical) limit reduce to 
the functions describing growth (regression) of the systems evolving over time. The PU formalism 
can be applied also to construct the coherent states of space-dependent oscillators, which in the 
dissociation limit produce cumulative distribution functions widely used in probability theory and 
statistics. A combination of the PU and supersymmetry provides a convenient tool for generating 
analytical solutions of the Fokker–Planck equation with the drift term related to the different forms of 
potential energy function. The results obtained reveal existence of a new class of macroscopic quantum 
(or quasi-quantum) phenomena, which may play a vital role in coherent formation of the specific growth 
patterns in complex systems.

© 2017 Elsevier B.V. All rights reserved.
1. Introduction

The concept of PU introduced by Castorina, Delsanto, and Guiot 
(CDG) [1,2] concerns ontologically different systems, in which mis-
cellaneous emerging patterns are described by the same mathe-
matical formalism. Universality classes are useful for their applica-
tive relevance and facilitate the cross fertilization among various 
fields of research, including physics, chemistry, biology, ecology, 
engineering, economics and social sciences [1–18]. This strategy 
is extremely important, especially for the export of ideas, models 
and methods developed in one discipline to another and vice versa. 
The PU approach is also a useful tool for investigation of the com-
plex systems whose evolution is governed by nonlinear processes. 
Hence, this methodology can be employed [1] to obtain different 
functions of growth widely applied in actuarial mathematics, biol-
ogy and medicine. In this work the research area is extended to 
include in the CDG scheme the quantum oscillatory phenomena, 
coherence and supersymmetry. In particular it will be proved that 
the CDG formalism is a hidden form of supersymmetry, which can 
be employed not only to produce macroscopic growth functions 
but also to construct quantum coherent states of the time- and 
space-dependent Morse [20] and Wei [21] oscillators. In the dis-
sociation (classical) limit they reduce to the well-know Gompertz 
[22] and West–Brown–Enquist (WBE)-type [23] functions (e.g. lo-
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gistic, exponential, Richards, von Bertalanffy) describing sigmoidal 
(S-shaped) temporal evolution or spatial distribution of subele-
ments of complex systems. We shall also be concerned with a 
generalization of the CDG approach to include regression states 
which has not been consider in the original formulation of the CDG 
theory.

2. Theory

According to the CDG theory, various degrees of nonlinearity 
appearing in the complex systems can be described and classified 
using the set of nonlinear equations [1]

dψ(q)

dq
− x(q)ψ(q) = 0,

dx(q)

dq
+ �(x) = 0. (1)

Here, q = utt denotes dimensionless temporal variable, ut is a scal-
ing factor, whereas �(x) stands for a generating function, which 
expanded into a series of x-variable (it slightly differs from the 
original CDG formulae) [1]

�(x) = c1(x + c0/c1) + c2(x + c0/c1)
2 + ... (2)

produces different functions of growth ψ(q) for a variety of pat-
terns emerging in the systems under consideration. To obtain their 
explicit forms a combination of Eqs. (1) is integrated generating 
the growth functions [1]
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ψ(q) = exp

⎡
⎣−

∫
x

xdx

�(x)
+ C

⎤
⎦ = exp

⎡
⎣∫

q

x(q)dq + C

⎤
⎦ (3)

for different powers n = 1, 2, ... of the truncated series (2). The in-
tegration constant C can be calculated from a boundary condition 
x(q = 0). For example for x(0) = 1, c0 = 0, c1 = 1, �(x) = x one 
gets the Gompertz function [22], whereas for �(x) = x + c2x2 the 
allometric WBE-type function [23] can be derived [1]

ψ(q)G = exp [(1 − exp(−q)] ,

ψ(q)W = exp [1 + c2 − c2 exp (−q)]1/c2 . (4)

Employing this approach the PU can be classified [1] as U 1 (n = 1), 
U 2 (n = 2) etc. with respect to the different levels of nonlin-
earity utilized by the complex systems during formation of the 
specific growth patterns. In subsequent works [9,10] the PU con-
cept has been extended to include parameter c1 and c0 = �(x) = 0. 
In the latter case, the solutions of Eqs. (1) and (3) take the form 
x(q) = x(0), ψ(q) = exp[x(0)q], which for q = utt represents U 0
class of PU describing self-catalytic processes [10]. The solutions 
of Eqs. (1) and (3) obtained in the original CDG scheme take the 
form monotonic growth curves, with no allowance for oscillations, 
which are ubiquitous dynamic feature of the complex systems ob-
served in nature. Oscillations are usually the results of the mutual 
interferences between a growing system and its surrounding, or 
between several competing processes appearing in the same sys-
tem. To describe such phenomena Barberis et al. [11] employed a 
complex function, whose real and imaginary parts represent two 
phenotypic traits of the same organism. As the result a generaliza-
tion of the Gompertz and WBE growth models has been obtained. 
The PU complex field formalism has been applied also by Delsanto 
et al. [9] in analyzing the evolution of the system depending on 
two variables driven by the set of coupled nonlinear differential 
equations (1). They reproduced main oscillatory features of the 
time-evolution curves belonging to the complex counterparts of 
U 1 and U 2 classes of PU. In another model proposed by Barberis 
and co-workers [12,13] interactive growth phenomena in biologi-
cal and ecological systems are described using vector formulation 
of PU in the real space. In this way the joint growth of two 
or more interacting organisms as well as mutual influences that 
operate through environment modifications can be characterized 
without ad hoc formulated assumptions on the nature of the in-
teractions. The vector universalities model has been also applied 
to describe the cancer growth viewed as the result of the compe-
tition between two or more cancer cell populations [14]. Recently, 
the classical oscillations have been also considered [17] in the CDG 
scheme generalized by Molski [19] employing only real variable. In 
this letter it will be proved that the PU classification scheme em-
braces not only classical but also quantum oscillatory phenomena, 
whose complete characteristics can be determined without the use 
of complex formalism. On the other hand, the proposed super-
symmetric interpretation of the CDG theory is based on the two 
component (vector) functions build up with the growth and re-
gression terms, hence we find here a some analogy to the Barberis 
and co-workers formalism [12–14]. However, it should be pointed 
out that the growth-regression states represent independent and 
uncorrelated in time processes, so the continuous transition of the 
growth phase to the regression state and vice versa is a genuine 
property of the systems under consideration.

3. Results

The CDG approach can be easily extended to include the space-
dependent phenomena using spatial variable q = urr in which ur is 
a scaling factor. In this way one may generate in the CDG scheme 
the space-dependent sigmoidal Gompertz and WBE-type functions 
widely applied in a range of fields including e.g. probability theory 
and statistics where they are used to describe cumulative distri-
bution of entities characterized by different spatial sizes [24]. In 
view of this the CDG formalism can describe not only temporal 
evolution of the complex systems represented by ψ(t) but also the 
spatial distribution ψ(r) of their subcomponents. In particular, the 
spatial version of the Gompertz function (4) has been found as 
a powerful descriptive tool for neuroscience where can be used 
as cumulative distribution curve correctly describing diameters of 
fibers in the olfactory nerves [24].

3.1. Regression

A detailed analysis of the CDG approach reveals that it does not 
take into account a very important phenomenon of regression (de-
cay) appearing in biological, medical, demographic and economic 
systems. Such an effect appears, for example, under chemothera-
peutic treatment of tumors subjected to cycle specific (or nonspe-
cific) drugs causing regression of cancer whose growth (decay) is 
described by the Gompertz function [25]. Recent investigations in 
the field of neurology revealed also that the temporal Gompertz 
function of regression can be employed to describe time course 
of synaptic current or change the membrane conductance during 
voltage clamp of squid axon [24]. To include the regression phe-
nomenon in the CDG scheme, Eqs. (1) and (3) should be modified 
to the form

dψ(q)†

dq
+ x(q)ψ(q)† = 0, (5)

ψ(q)† = exp

⎡
⎣∫

x

xdx

�(x)
+ C

⎤
⎦ = exp

⎡
⎣−

∫
q

x(q)dq + C

⎤
⎦ , (6)

which for �(x) = x and �(x) = x + c2x2 produce Gompertz and 
WBE-type functions of regression [24,25]

ψ(q)
†
G = exp [−(1 − exp(−q)] ,

ψ(q)
†
W = exp [1 + c2 − c2 exp (−q)]−1/c2 . (7)

It is easy to demonstrate that for q → ∞ the functions ψ(q)
†
G →

exp(−1), ψ(q)
†
W → (1 + c2)

−1/c2 diminish with q, hence they de-
scribe the regression states of the system under consideration. The 
regression states have been generated also in [18] by a proper 
choice of the parameters defining the growth functions or by ap-
plying the involuted Gompertz function derived by Molski [19]. In 
contrast to this approach Eq. (5) can be applied to derive regres-
sion states associated with all types of growth functions created in 
the CDG scheme independently of parameters defining them.

3.2. Supersymmetry

Analysis of Eqs. (1) and (5) reveals that they can be interpreted 
in the framework of time-dependent (q = utt) [26] or space-
dependent (q = urr) [27] quantum supersymmetry (SUSYQM), used 
among others to construct coherent states of quantum oscillators 
and to obtain exact solutions of the Schrödinger equation for vi-
brating harmonic and anharmonic systems. In view of this, it is 
tempting to apply the CDG methodology to generate the coherent 
states of time- and space-dependent oscillators and compare them 
with those obtained using algebraic procedure [28,29]. To prove 
that mathematical formalism of PU is a hidden form of supersym-
metry, lets differentiate growth equation (1) once with respect to 
q-coordinate and then rearrange the derived formulae to obtain the 
second order differential equation in a standard eigenvalue form
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d2ψ(q)

dq2
− ψ(q)

dx(q)

dq
− x(q)

dψ(q)

dq
=

[
−1

2

d2

dq2
+ V (q) − ε

]
ψ(q) =

(
Ĥ − ε

)
ψ(q) = 0,

V (q) − ε = 1

2

[
x(q)2 + dx(q)

dq

]
, (8)

represents (with accuracy to multiplicative constant) the Riccati 
equation [26,27]. In similar manner one may derive

d2ψ(q)†

dq2
+ ψ(q)† dx(q)

dq
+ x(q)

dψ(q)†

dq
=

[
−1

2

d2

dq2
+ V (q)† − ε

]
ψ(q)† =

(
Ĥ† − ε

)
ψ(q)† = 0,

V (q)† − ε = 1

2

[
x(q)2 − dx(q)

dq

]
, (9)

employing the regression equation (5). The quantity x(q) appear-
ing in Eqs. (1), (8) and (9) has a dual interpretation: in algebraic 
methods +x(q) represents an anharmonic variable [29], whereas 
in SUSYQM, −x(q) = W (q) stands for a superpotential [27], which 
permits rewriting the Hamilton operators appearing in Eqs. (8) and 
(9) in the terms of first-order annihilation and creation operators 
Â and Â†

Ĥ = 1√
2

[
− d

dq
+ W (q)

]
1√
2

[
d

dq
+ W (q)

]
= Â† Â,

Ĥ† = 1√
2

[
d

dq
+ W (q)

]
1√
2

[
− d

dq
+ W (q)

]
= Â Â†. (10)

In SUSYQM operators Ĥ and Ĥ† form the two-component Hamil-
tonian [27]

Ĥ S =
[

Ĥ 0

0 Ĥ†

]
(11)

including fermionic Ĥ and bosonic Ĥ† components, respectively. 
They are supersymmetric partners of each other and correspond 
to an isospectral pair of potentials V (q) and V (q)†. In the CDG 
methodology fermionic and bosonic components can be associated 
with the growth ψ(q) and regression ψ(q)† functions, respectively. 
They are solutions of the supersymmetric isospectral equation

Ĥ S� =
[

Ĥ 0
0 Ĥ†

][
ψ(q)

ψ(q)†

]
= ε

[
ψ(q)

ψ(q)†

]
(12)

or can be calculated from Eq. (3) specified in the form well-known 
in SUSYQM [27]

ψ(q) = exp

⎡
⎣−

∫
q

W (q)dq + C

⎤
⎦ ,

ψ(q)† = exp

⎡
⎣+

∫
q

W (q)dq + C

⎤
⎦ (13)

being supersymmetric versions of the CDG formulae (3) and (6). To 
demonstrate an apparent connection between CDG and SUSYQM 
formalisms, lets consider the Gompertzian system characterized by 
x(0) = 1, �(x) = x, x(q) = exp(−q) yielding Eqs. (8) and (9) in the 
explicit forms{
−1

2

d2

dq2
+ 1

8
[1 − exp[−(q − q0)]]2 − 1

8

}
ψ(q)G = 0,

{
−1 d2

2
+ 1

[1 + exp[−(q − q0)]]2 − 1
}

ψ(q)
†
G = 0, (14)
2 dq 8 8
in which q0 = ln(2). One may also prove that Eqs. (14) can be 
decomposed on the first-order operators Â and Â† appearing in 
Eqs. (8) and (9), whose ground state solutions describes Gom-
pertzian growth and regression

Âψ(q) = 1√
2

[
d

dt
+ W (t)

]
ψ(q) = 0,

Â†ψ(q)
†
G = 1√

2

[
− d

dt
+ W (t)

]
ψ(q)

†
G = 0, (15)

here W = −x(q) = − exp(−q). In the same manner, one may con-
struct the second and first order equations for the growth and 
regression of WBE-type systems by taking advantage the super-
potential W calculated from Eq. (6) and explicit forms of the WBE 
growth and regression functions (3) and (7).

3.3. Quantum oscillatory phenomena

The quantity x(q) enables to associate via Eq. (8) a potential 
energy V (q) and eigenvalue ε with all types of functions ψ(q)

derived in CDG scheme. On the other hand, ψ(q) is interpreted 
as the solution of the differential equation (8), whose form re-
sembles the quantal Schrödinger formula. To prove that the CDG 
approach produces not only classical (macroscopic) growth func-
tions but also quantal (microscopic) once, one may apply a linear 
expansion of the generating function �(x) = c0 + c1x, which in-
cludes a constant term c0 �= 0 omitted in the CDG scheme and c1
coefficient, which in the original CDG approach was constrained 
to 1 [1]. This CDG generalization was proposed first by Molski [19]
and then employed in investigations of the classical oscillations 
and growth-regression states in [17,18]. To generate the quantal 
solutions in the CDG scheme we assume that x(0) = (1 − c0)/c1, 
which for c0 = 0, c1 = 1 gives the CDG initial condition x(0) = 1. 
Employing Eqs. (1) and (3) by integration one gets (c0, c1 > 0)

x(q) = 1

c1
[exp(−c1q) − c0] ,

ψ(q) = exp

{
1

c2
1

[1 − exp(−c1q)]

}
exp

(
− c0

c1
q

)
, (16)

which by making use of correspondences c2
1 = 2xe , c0 = 1 − xe can 

be converted to alternative forms

x(q) =
[

exp(−√
2xeq) − 1 + xe√

2xe

]
,

ψ(q)0 = exp

[
1 − exp

(−√
2xeq

)
2xe

]
exp

[
(xe − 1)q√

2xe

]
. (17)

Taking advantage of the Riccati equation (8) one may derive the 
second order differential equation whose solution is function (17){
−1

2

d2

dq2
+ 1

4xe

[
1 − exp(−√

2xeq)
]2 − ε0

}
ψ(q)0 = 0, (18)

which includes eigenvalue ε0 = 1/2 − xe/4 being a ground state 
(v = 0) version of a general formulae (in dimensionless unit) εv =
v + 1/2 − xe(v + 1/2)2, v = 0, 1, 2.... It is interesting to note that 
Eq. (18) under substitutions ε0 = E0, xe = h̄ω/4De , ω = a

√
2De/m

and q = a(r − r0)/
√

2xe converts to the Schrödinger equation for 
the ground state of Morse oscillator [29]{

− h̄2

2m

d2

dr2
+ De [1 − exp [−a(r − r0)]]2 − E0

}
ψ(r)0 = 0, (19)

whereas for ε0 = P0c, xe = h̄ω/4De , ω = a
√

2De/mc2 and q =
a(t − t0)/

√
2xe Eq. (18) yields the quantal Horodecki equation [31]

for the ground state of time-dependent Morse oscillator [28]
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{
− h̄2

2mc2

d2

dt2
+ De [1 − exp [−a(t − t0)]]2 − P0c

}
ψ(t)0 = 0.

(20)

Eq. (20) represents the non-relativistic version of the relativis-
tic Feinberg equation [30], first time derived by Horodecki [31]; 
it is a space-like (nonlocal) counterpart of the time-like (local) 
Schrödinger formula (19). In Eqs. (19) and (20) xe is anharmonic-
ity constant, ω – frequency, De – dissociation constant, m – 
mass, c – light velocity. The eigenvalues E0 = (h̄ω)(1/2 − xe/4)

and P0 = (h̄ω/c)(1/2 − xe/4) for xe = 0 reduces to E0 = h̄ω/2
and P0 = h̄ω/2c valid for the ground state of space- and time-
dependent harmonic oscillators. In this case, which corresponds 
to c1 = 0 and �(x) = c0 = 1, Eqs. (16) convert to x(q) = −q and 
ψ(q)0 = exp

(−q2/2
)

representing a ground state of the quantal 
harmonic oscillator. Hence, E0 and P0 can be interpreted as the 
zero-point energy and momentum of vacuum [32,33], which are 
consequences of the random spatial (temporal) fluctuations of vac-
uum and position-momentum (time-energy) uncertainty principle.

It is worth emphasizing that the time-depended version of ψ(q)

specified by Eq. (16) for c0, c1 < 0 reproduces Makeham function 
[34,35], which has been used in actuarial science for specifying 
a simplified mortality law. In this connection ψ(q) represents the 
probability that a newborn will achieve age q.

Proceeding in the same manner as for the first term of Eq. (2)
one can derive x(q) and ψ(q) for the second order expansion of 
�(x) = c1(x + c0/c1) + c2(x + c0/c1)

2 and identical as before initial 
condition x(0) = (1 − c0)/c1

x(q) = c1 exp(−c1q)

c2
1 + c2 − c2 exp(−c1q)

− c0

c1

= (sc1/c2)exp[−c1(q − q0)]
1 − s exp[−c1(q − q0)] − c0

c1
,

ψ(q) = {1 − s exp[−c1(q − q0)]}1/c2 {s exp[−c1(q − q0)]}c0/c2
1 ,

q0 = 1

c1
ln

[
2c2

1 − c2
1c2 + 2c0c2

(2c0 + c2
1)(c2

1 + c2)

]
,

s = c2(2c0 + c2
1)

2c2
1 − c2

1c2 + 2c0c2
, (21)

and then one may construct the quantal Schrödinger and Feinberg–
Horodecki equations{

−1

2

d2

dq2
+ D

[
1 − exp[−c1(q − q0)]

1 − s exp[−c1(q − q0)]
]2

− ε

}
ψ(q) = 0, (22)

for the ground state of the time-dependent Wei oscillator [21] in 
which D = (2c0 + c2

1)2/8c2
1(1 − c2) and ε = D − c2

0/2c2
1. The solu-

tion (21) and parameters appearing in (22) can be specified in the 
form applied by Wei [21] employing replacements c1 = b, s = c, 
1/c2 = ρ + 1/2, c0/c2

1 = ρ0.
It should be pointed out here that only modified form of the 

generated function (2) produces quantal solution (21) for the Wei 
oscillator, whereas the conventional form �(x) = c0 + c1x + c2x2

applied by CDG leads to the classical solutions for the dumped 
oscillations first time derived in [17].

The results obtained in this section clearly indicate that the 
class of PU can be extended to include quantum oscillatory phe-
nomena for harmonic as well as anharmonic Morse and Wei os-
cillators generating subclasses Q 0, Q 1 and Q 2 of PU for different 
powers n = 0, 1, 2 of the truncated series (2) for c0 �= 0. In the next 
section it will be demonstrated that the quantal subclasses Q n of 
PU are generalization of the classical Un due to the transformation 
Q n 

c0=0−→ Un taking place for n = 1, 2.
3.4. Coherence

Continuing the search for further analogies between the CDG 
and quantum formalisms, we find that equations of growth (1)
and regression (5) can be specified for α = α∗ = 0, |0〉 = ψ(q) and 
〈0| = ψ(q)† in the forms

Â|α〉 = αψ(q)exp[√2αq], 〈α| Â† = α∗ψ(q)† exp(
√

2α∗q),

Â = 1√
2

[
d

dq
− x(q)

]
, Â† = 1√

2

[
− d

dq
− x(q)

]
,

[ Â, Â†] = �(x) (23)

familiar in the quantum theory of minimum uncertainty coherent 
states of harmonic and anharmonic oscillators [27]. The coherent 
states, which minimize the generalized position-momentum [29]
(local states) or time-energy [28] (nonlocal states) uncertainty rela-
tions are eigenstates of the annihilation operator Â . They not only 
minimize the Heisenberg relations, but also maintain those rela-
tions in time (space) due to their temporal (spatial) stability, hence 
they are called intelligent coherent states [37]. One may prove that 
coherent states (23) minimize the generalized uncertainty relation 
(h̄ = 1) [29,28]

[	x(q)]2 (	ε)2 ≥ 1

4
〈α|�(x)|α〉2, �(x) = ∓i

[
x(q), ε̂

]
, (24)

in which ε̂ = ±id/dq represents energy (+) or momentum (−) 
operator whereas x(q) plays the role of a temporal (spatial) anhar-
monic variable associated with a given potential. To carry out the 
proof, the following relationships should be derived for normalized 
states 〈α||α〉 = 1

〈α|x(q)|α〉 = − 1√
2
〈α| Â + Â†|α〉 = − 1√

2

(
α + α∗) ,

〈α|ε̂|α〉 = i
1√
2
〈α| Â − Â†|α〉 = i

1√
2

(
α − α∗) ,

2〈α|x(q)2|α〉 = (
α + α∗)2 + 〈α|�(x)|α〉,

−2〈α|ε̂2|α〉 = (
α − α∗)2 − 〈α|�(x)|α〉. (25)

Having derived Eqs. (25) we can calculate the squared standard 
deviations

	x(q)2 = 〈α|x(q)2|α〉 − 〈α|x(q)|α〉2 = 1

2
〈α|�(x)|α〉,

	ε2 = 〈α|ε̂2|α〉 − 〈α|ε̂|α〉2 = 1

2
〈α|�(x)|α〉, (26)

which prove that

[	x(q)]2 (	ε)2 = 1

4
〈α|�(x)|α〉2. (27)

Eq. (27) is satisfied both for α �= 0 as well as α = 0 and an 
arbitrary form of generating function �(x). Those facts indicate 
that ψ(q) in CDG approach can be interpreted as a minimum un-
certainty coherent state of oscillator characterized by anharmonic 
variable x(q). It is noteworthy that this interpretation remains in-
dependent of the type of generating function �(x), hence it can 
be applied both to micro- and macroscopic systems, characterized 
by c0 �= 0 and c0 = 0, respectively. In particular, using the CDG ap-
proach one may construct the coherent states of the time- and 
space-dependent Morse oscillator, which for c0 = 0 and c1 = 1
convert to the Gompertzian coherent states of growth (regression) 
first time derived by Molski and Konarski [38]
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1√
2

{
d

dq
− 1

c1
[exp(−c1q) − c0]

}
|α〉 =

α exp

{
1

c2
1

[1 − exp(−c1q)]

}
exp

[
− c0q

c1

]
exp(

√
2αq)

c0=0,c1=1−→

1√
2

{
d

dq
− [exp(−q)]

}
|α〉 =

α exp [1 − exp(−q)] exp(
√

2αq)
α=0−→[

d

dq
− exp(−q)

]
exp [1 − exp(−q)] = 0, (28)

〈α| 1√
2

{
− d

dq
− 1

c1
[exp(−c1q) − c0]

}
=

α∗ exp

{
− 1

c2
1

[1 − exp(−c1q)]

}

× exp

[
c0q

c1

]
exp(

√
2α∗q)

c0=0,c1=1−→

〈α| 1√
2

{
− d

dq
− [exp(−q)]

}
=

α∗ exp {− [1 − exp(−q)]}exp(
√

2α∗q)
α∗=0−→[

− d

dq
− exp(−q)

]
exp {− [1 − exp(−q)]} = 0. (29)

In a similar manner, one may construct the coherent states of 
time- and space-dependent Wei oscillator, which in the dissocia-
tion (classical) limit convert to the coherent WBE-type function of 
growth

1√
2

{
d

dq
− (sc1/c2)exp [−c1(q − q0)]

1 − s exp [−c1(q − q0)]
+ c0

c1

}
|α〉 =

α {1 − s exp [−c1(q − q0)]}1/c2 {s exp [−c1(q − q0)]}c0/c2
1

× exp(
√

2αq)
c0=0,c1=1−→

1√
2

{
d

dq
− (s′/c2)exp

[−(q − q′
0)

]
1 − s′ exp

[−(q − q′
0)

]
}

|α〉 =

α
{

1 − s′ exp
[−(q − q′

0)
]}1/c2 exp(

√
2αq)

α=0−→{
d

dq
− (s′/c2)exp

[−(q − q′
0)

]
1 − s′ exp

[−(q − q′
0)

]
}{

1 − s′ exp
[−(q − q′

0)
]}1/c2 =

[
d

dq
− exp (−q)

1 + c2 − c2 exp (−q)

]
[1 + c2 − c2 exp (−q)]1/c2 = 0.

(30)

Here q′
0 = ln [(2 − c2)/(1 + c2)] and s′ = c2/(2 − c2). Analogically 

the WBE states of regression can be derived from quantal solutions 
of the creation equation (23).

3.5. The Fokker–Planck equation

The combination of the CDG approach with SUSYQM formalism 
seems to be a convenient tool for generating analytical solutions of 
the Fokker–Planck (FP) equation [39]

∂

∂τ
P (q, τ ) = − ∂

∂q
[ f (q)P (q, τ )] + �

2

∂2

∂q2
P (q, τ ) (31)

specified in dimensionless spatial q and temporal τ coordinates. In 
Eq. (31) �/2 and f (q) represent dimensionless diffusion constant 
and the drift term related to the potential energy of the system, 
whereas P (q, τ ) describes the probability distribution function. 
The FP equation is used to study stochastic phenomena e.g. Brow-
nian motions and other diffusion governed processes. Their nature 
requires application of probabilistic techniques to describe unpre-
dictable paths emerging in the complex system under influence 
of thermal fluctuations, mechanical collisions as well as physical 
and chemical interactions between its micro-components. There 
are numerous practical applications of the FP equation in domain 
of physics, chemistry, biology, astronomy, economy and other sci-
ences [39], which are based on solutions of Eq. (31) generated 
by numerical integration, simulation methods or analytical proce-
dures. In the latter case the probability function P (q, τ ) can be 
specified in the form [40,41]

P (q, τ ) =
∞∑

ν=0

aνψ(q)0ψ(q)ν exp(−τ |λν |), aν = ψ(0)0

ψ(0)ν
(32)

which permits decomposition of (31) onto the set of Schrödinger-
like equations{
−�

2

∂2

∂q2
+ 1

2

[
f (q)2

�
+ df (q)

dq

]
− λν

}
ψ(q)ν = 0,

ν = 0,1,2... (33)

which can be written in the factorized form ( F̂ † F̂ − λν)ψ(q)ν = 0

F̂ † = 1√
2

[
−√

�
d

dq
− f (q)/

√
�

]

F̂ = 1√
2

[√
�

d

dq
− f (q)/

√
�

] (34)

amenable to straightforward analytical treatment in the CDG 
scheme. To this aim, Eqs. (1), (2) and (3) are converted to the 
forms adequate to the FP formalism

F̂ψ(q)0 = 0, −df (q)

dq
= �( f ) = c0 + c1 f (r) + ...,

ψ(q)0 = exp

⎡
⎣�−1

∫
q

f (q)dq + C

⎤
⎦ . (35)

In the simplest case of Q 0 subclass of PU characterized by �( f ) =
c0 �= 0 from (35) and condition ψ(0) = 1 one gets f (q) = −c0q
and the ground state solution ψ(q)0 = exp([−c0q2/(2�)] satisfying 
Eq. (33) for λ0 = 0. Eq. (33) can be specified in an alternative form(

−�

2

∂2

∂q2
+ c2

0

2�
q2 − c0

2
− λν

)
ψ(q)ν = 0, (36)

by calculating the Riccati’s term appearing in (33) and defined by 
(8). The complete set of analytical solutions of Eq. (36) takes the 
well-known form

�(q)ν = 1√
2νν!

( c0

�π

)1/4
exp

[
−c0q2/(2�)

]
Hν(

√
c0/�q) (37)

being a classical counterpart of the quantal harmonic oscillator 
solutions associated with eigenvalues λν = c0ν and physicists’ Her-
mite polynomials Hν(q).

Having determined the eigenfunctions (37) and eigenvalues λν , 
we can calculate coefficients aν appearing in (32) and construct 
the final form of the probability function for Q 0 class of solutions 
of the FK equation

P (q, τ ) =
∞∑

ν=0

1

Hν(0)

( c0

�π

)1/2
exp

(
−c0q2/�

)

× Hν

(√
c0/�q

)
exp(−τ c0ν). (38)



2634 M. Molski / Physics Letters A 381 (2017) 2629–2635
For τ → ∞ Eq. (38) reduces to the well-known classical formula

P (q) = [c0/(�π)]1/2 exp(−c0q2/�)

= P (r) = [c0/(�π)]1/2 exp[−c0u2
r (r − r0)

2/�] (39)

representing stationary state of the Ornstein–Uhlenbeck process 
identified with the Gaussian (normal) distribution [39]. Here ur is 
a scaling factor in units [m−1], r0 is a mean or expectation of the 
distribution, �/(c0u2

r ) = σ 2 stands for variance and σ is standard 
deviation of the mean.

Proceeding in the same manner as for Q 0 class of PU and 
using constraints �(0) = 1 and f (0) = (1 − c0)/c1 we can solve 
Eqs. (35) for Q 1 class represented by �( f ) = c0 + c1 f (q) provid-
ing f (q) = (1/c1)[exp(−c1q) − c0] and the FP equation including 
the generalized (k �= 1) [36] or standard (k = 1) [20] Morse func-
tion, amenable to direct analytical treatment{

−�

2

∂2

∂q2
+ 1

2c2
1�

[k − exp(−c1q)]2 − k

2
+

(
c2

1�

2

)
1

4
− λν

}

× ψ(q)ν = 0. (40)

The solutions and associated eigenvalues take the form

ψ(q)ν = Nν exp

{
1

�c2
1

[1 − exp(−c1q)]

}

× exp

[
−c1q

(
k

c2
1�

− ν − 1

2

)]

L
[2/(c2

1�)−2ν−1]
ν

[
2/(c2

1�)exp(−c1q)
]
,

Nν =
√

c1[2/(c2
1�) − 2ν − 1]ν!

�[2/(c2
1�) − ν] ,

λν = kν − c2
1�

2
(ν2 + ν) = c0ν − c2

1�

2
ν2, ν = 0,1,2...

k = c0 + c2
1�

2
. (41)

Here, Lα
ν (q) and �(β) represent generalized Laguerre polynomials 

and gamma function, respectively and Eq. (40) can be interpreted 
as a classical counterpart of the wave equation for the generalized 
Morse potential V (q) = De[k − exp(−c1q)]2.

Introducing ψ(q)ν , ψ(0)ν , Nν , and λν = kν − c2
1�/2(ν2 + ν)

into Eq. (32) one gets the probability distribution function P (q, τ ), 
which for τ → ∞ reduces to the stationary formula

P (q) = N2
0 exp

{
2

�c2
1

[1 − exp(−c1q)]

}

× exp

[
−2c1q

(
k

c2
1�

− 1

2

)]
= P (r) =

N2
0 exp

{
2

�c2
1

{1 − exp[−c1ur(r − r0)]}
}

× exp

[
−2c1ur(r − r0)

(
k

c2
1�

− 1

2

)]
(42)

representing asymmetric, right-skewed distribution function (see 
Fig. 1). Its form differs from the normal distribution (39) endowed 
with the null skewness. However, in reality, some data points may 
not be perfectly symmetric, so the skewness of the distribution 
functions correctly reproducing the data sets is an important prop-
erty worth considering for the sake of practical applications. It 
Fig. 1. The plots of the non-normalized distribution function P (r) (42) for ur = c1 =
r0 = k = 1 and different values of the diffusion constant: � = 2, � = 1.5, � = 1, � =
0.5. The solid and dot plots present Gompertz (� = 2) P (r) = exp [1 − exp(−r + 1)]
and Gauss P (r) = exp[−(r − 1)2] distributions, respectively.

should be pointed out also that skewed function (42) is a general-
ization of the sigmoidal Gompertz function (4) to be derived from 
(42) by substitutions c2

1� = 2 and ur = c1 = k = 1. In the same 
manner as for Q 0 and Q 1 classes one may calculate P (q, τ ) and 
P (q) for Q 2 class of PU including processes governed by the drift 
term f (q) associated with the anharmonic Wei potential [21]. The 
results obtained in this section can be applied in modeling of bio-
logical growth and mechanisms involving cells differentiation with 
possible applications in determining optimal strategy for the med-
ical treatment [41] (and references cited therein).

4. Conclusions

The results obtained indicate that the concept of PU originally 
applied only to macroscopic complex systems can be extended to 
include quantum oscillatory phenomena, coherence and supersym-
metry playing a vital role on the microscopic level. In connection 
presented a micro-macro conversion is accomplished by c0 → 0, 
which transforms quantum equations into classical ones. Only one 
exception is quantal uncertainty relation (24), which is satisfied 
both for micro- and macroscopic functions ψ(q) generated for an 
arbitrary form of �(x). This fact has very important interpretative 
implications. The ordinary time-like coherent states, which min-
imize the position-momentum uncertainty relation evolve coher-
ently in time being localized on the classical space-trajectory [42], 
on the contrary, the space-like coherent states which minimize the 
time-energy uncertainty relation evolve along localized (classical) 
time-trajectory being coherent in all points of space [28,38]. Such 
states assumed to be coherent at an arbitrary point of space re-
main coherent in all points of space. We conclude that the spatial 
coherence is an immanent feature of all systems whose growth 
(decay) is described by time-dependent functions derived in the 
CDG scheme independently of their quantal or classical nature. Al-
though the notions of coherence and supersymmetry are usually 
attributed to microscopic systems, the correspondence principle 
introduced by Niels Bohr [43] allows for the physical characteris-
tics of quantum systems to be maintained also in classical regime. 
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According to this concept, the quantum theory of micro-objects 
passes asymptotically into the classical one when the quantum 
numbers characterizing the micro-system attain extremely high 
values or we can neglect the Planck’s constant. In this way one 
may derive e.g. from quantal Planck’s black-body radiation formula 
the classical Rayleigh–Jeans law describing the spectral radiance 
of electromagnetic waves. Both models describe the same phe-
nomenon but employ diverse (quantum vs classical) formalisms 
and are valid for different wavelength ranges of emitted radia-
tion. Identical situation appears in the case of quantal oscillatory 
phenomena which in the classical limit possess the same char-
acteristics as their quantum counterparts. The first- and second-
order growth equations obtained in this way do not contain mass 
nor Planck’s constant [28,38], therefore according to the corre-
spondence principle, they represent classical equations of coherent 
growth (regression). It is straightforward to demonstrate that for 
c0 = 0 quantal Eqs. (19), (20), (28), (29) and (30) convert to their 
classical counterparts characterized by the dissociation condition 
ε = D . We conclude that the macroscopic Gompertz and WBE-type 
functions have identical forms as microscopic ground state solu-
tions of the quantal equation for the time-depended Morse and 
Wei oscillators in the dissociation state. Consequently, the quantal 
subclasses Q n of PU are generalization of the classical Un in-

troduced by CDG [1] due to the relationship Q n 
c0=0−→ Un taking 

place for n = 1, 2. It should be pointed out that in the dissocia-
tion limit (or c0 = 0) the direction of temporal growth (regression) 
is consistent with the arrow of time, hence it is not of the os-
cillatory type as predicted for hypothetical bound states of time-
dependent oscillators. The extension of the PU strategy presented 
in this work permits including in the CDG classification scheme not 
only quantum oscillatory phenomena belonging to Q 0, Q 1 and 
Q 2 subclasses of PU, but also the coherence and supersymmetry 
proving that they persist both in micro- as well as macro domains. 
Hence, the results obtained reveal existence of a new class (accord-
ing to the Leggett classification [44]) of macroscopic quantum (or 
quasi-quantum) phenomena, which may play a vital role in coher-
ent (local and nonlocal) formation of the specific growth patterns 
in complex systems. The extended CDG formalism including the 
space-dependent phenomena can be applied to generate the co-
herent states of the space-dependent Morse and Wei oscillators, 
which minimize the position-momentum uncertainty relation [36]
and in dissociation limit c0 → 0 or, equivalently E → D , reduce 
to the space-dependent sigmoidal Gompertz and WBE-like func-
tions widely applied in a range of fields including e.g. probability 
theory and statistics where they are used to describe cumulative 
distribution of entities characterized by different spatial sizes [24]. 
A combination of the CDG and SUSYQM theories provides a con-
venient tool for generating analytical solutions of the FP equation 
with the drift term f (q) related to the pseudopotential −W (q) to 
be determined for harmonic as well as anharmonic Morse and Wei 
potentials. The exact solutions of the FP equation obtained in this 
way can be used in determining the probability distribution func-
tion P (q, τ ) widely used in many areas of sciences [39] including 
modeling of the processes in biological systems and mechanisms 
involving cells proliferation and differentiation with possible appli-
cation in evaluating optimal strategies for the medical treatment 
[45,46].
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