
Turing Machines as Conscious Computing
Machines

Jerzy Król and Andrew Schumann

Department of Cognitive Science and Mathematical Modelling,
University of Information Technology and Management,

ul. Sucharskiego 2, 35-225 Rzeszów, Poland,
jkrol@wsiz.edu.pl

Abstract. We uncover certain universal features of Turing machines
(TM) as operating in a perpetually changing environment which can
have sudden and highly random influence on TMs themselves. TM adapts
and assimilates the changed environment and performs its computational
functioning in new conditions. We show that this transcends essentially
Turing computability relative to a ground model of ZFC. We distil the
formal counterparts responsible for the adaptation and assimilation of
TM and propose they may underlie the conscious behaviour of general
systems including living creatures. However, in this last case more work
leading to layer’s structure of TMs is needed. We also make an attempt
toward social TMs by finding the way how TMs can group and cooperate.

Keywords: Turing machines in models of ZFC, forcing, formal aspects
of consciousness.

1 Introduction

A Turing machine is a formal concept explaining what any computability pro-
cess looks like. The usual way of seeing computability as a formal processes is
rooted in arithmetical constructions and rather lacks of the broader outer, i.e.
environmental, perspective. We want to fill the gap and extend formally defined
TM over external formal environment. The environment reacts on such TM in
a random way and this modifies TM. The implementation of the modification
will not destroy TM but rather enlarges its computational abilities. We base our
analysis on the well-known relation of the axiomatic Zermelo-Fraenkel set the-
ory with the axiom of choice (ZFC) with its models (e.g. [1]). The dynamics of
models (forcing extensions) is the factor representing the reaction of TM on the
environmental stimuli. From the point of view of pure ZFC (lacking the perspec-
tive of models) the dynamics is out of the reach. It is also widely known fact that
despite the simplicity of TM, it is implemented in a way in any software of any
classical computer. Similarly the extension of TM over the formal environment
(FE) (represented by ZFC tools) we work out here, being direct and simplifying,
still it leads to universal features.
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One important aspect of the approach is presented by the mechanism of
assimilation of the FE reaction on TM such that this TM is changing from
the state of completely random affecting the outer stimuli into the modified
TM with the stimuli becoming its building blocks. The entire process resembles
a way how a living organism is gaining its skills under the influence of the
perpetually changing environment. The formal perspective proposed here seems
limiting at first sight, but it might bear universal mathematical features so that
they may underlie the conscious behaviour of creatures in the world. This is
quite analogously to the universal TM which serves as universal computational
machines in the class of all classical computers (TMs) (e.g. [2]) even though this
reduction to the universal TM is not evident in each case.

2 Key terminologies

Before we present the main construction, in this section we grasp together basic
facts regarding TM as well as TM with oracles (o-TM), Turing uncomputable
classes and algorithmic randomness, and set theoretic constructions like forcing.
They will be needed in the following sections.

2.1 Classical Turing machines with oracles

Let Q be a finite set of possible (internal) states of TM, Q = {q0, . . . , qn}, n ≥ 1;
let t be an infinite two-sided tape containing cells. Each cell has written in the
symbol 1 or the symbol B, blank, S = {1, B}. Let h be a reading head which
in each single step can read the content of a cell on the tape t and move to the
right, if X = R, or to the left, when X = L. TM can also rewrite (change) the
existed symbol s ∈ S in the cell to a new symbol s′ ∈ S = {1, B}.

Definition 1 ([2]). TM comprises of the tape t, head h, and TM is in one of its
internal states from S. The functioning of TM is described by the collection of
steps governed by the collection of symbols (q, s, q′, s′, X), where q, q′ ∈ Q, s, s′ ∈
S,X ∈ {L,R}, such that TM in the state s reads the symbol s from the tape and
changes its state to s′ and writes down in the scanned cell a new symbol s′ and
moves its head to the right, if X = R, or to the left, if X = L, by a single cell
in each step.

Thus, the operation of any TM is governed by the partial function (not every-
where defined, since TM may not produce any writing over a cell content and
move of the head):

Q× S → Q× S × {R,L}.
The Turing program is a finite set of the values assigned to (q, s, q′, s′, X), i.e.
it is a finite set of quintuples. The states S contains the leftmost state q0 which
is ‘1’ in the cell (initial state) and the halting state (which, however, may not
be attained). The detailed discussion of how TM computes, based on the above
definition, can be found, e.g., in [2].
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Definition 2. TM with oracle A ⊂ N, o-TM or TMA, it is a TM with an
additional infinite read-only tape A, on which there is written the characteristic
function of A ({0, 1}-binary sequence). The reading of the tape A is the part of
the functioning of TM.

Thus, the o-TM allows for performing computations on the data, which might
not depend on any action of any TM. Given the o-TM and putting the set un-
computable but computably enumerable (c.e.) into the oracle, one gets entire
hierarchy of uncomputable Turing classes. The example are ∅ sets expressing
the halting problem of TM, and their n-th uncomputable jumps ∅(n) placing
∅n−1 into the oracle. We refer the reader to the excellent exposition by Robert
Soare [2] or in [3].

2.2 Arithmetic and Turing classes

The concept of algorithmic randomness is based on the hierarchyΣ0
n, n = 0, 1, . . .

of complexity of arithmetic formulas (e.g. [2–4]). Higher arithmetic classes of
formulas correspond to objects, which can be determined by a TM, however,
with the increasing computational complexity. So to define a purely random
binary infinite sequence σ ∈ 2ω, one requires that σ omits all or some classes.
This is how the original Martin Löf (ML) test for randomness arose.

1. ML test: A sequence {An, n ∈ N} of uniformly computably enumerable

(c.e.) (i.e. c.e. together with the set of its indices [3, p.11]) of
∑0

1 classes (
∑0

1

subsets of sequences from 2ω) such that ∀n∈N (µ(An) < 2−n).

2. A ⊂ 2ω is ML-null, when there exists a ML test {An, n ∈ N}, such that
A ⊆

⋂
n∈N An.

3. σ ∈ 2ω is ML-random, if {σ} is not ML-null (for each ML test).

4. A ML test {An, n ∈ N} is universal, when
⋂

n∈N Bn ⊂
⋂

n∈N An for all
ML-tests {Bn, n ∈ N}.

Lemma 1. There exists a universal ML test.

ML-random sequence σ ∈ 2ω is known to be 1-random. The direct modification
to Σ0

n classes gives rise to the hierarchy of n-random sets, for all n ≥ 1.

i. MLn test: A sequence {Ak, k ∈ N} of uniformly c.e. of
∑0

n classes (
∑0

n

subsets of sequences from 2ω), such that ∀k∈N
(
µ(Ak) < 2−k

)
.

ii. A ⊂ 2ω is MLn-null, when there exists a MLn test {Ak, k ∈ N}, such that
A ⊆

⋂
k∈N Ak.

iii. σ ∈ 2ω is n-random if {σ} is not MLn-null (for each MLn test).

Since the set of all subsets of natural numbers represents real numbers, the
usual way how the sets of all reals are represented in models of set theory is
2ω (or ωω), which is a Polish space [1, 4]. That is why speaking about reals in
models of ZFC is speaking about infinite binary sequences.
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2.3 Forcing in set theory

Given B a complete Boolean algebra in a model M of ZFC, we have:

Lemma 2. There exists a generic extension M [r] ⊋ M iff B is atomless in M .

Definition 3. The measure algebra (random algebra) is the Boolean algebra B
which is the algebra of Borel subsets of R modulo the ideal of subsets of Lebesgue
measure zero, B = Bor(R)/N .

Lemma 3. The measure algebra B is the atomless complete Boolean algebra.

It follows that there exist nontrivial random real numbers r ∈ M [r] ̸= M when-
ever B is the measure algebra in M .

3 Results

As we have already noticed, the oracle TM, TMA, A ⊂ N, leads to the entire
spectrum of Turing uncomputable classes. Starting with A as certain c.e. set,
which is not Turing computable, TMAs compute the characteristic classes of
other sets, belonging to the same Turing class as A itself. Then taking higher
Turing classes as oracles, we repeat the computability by TMs with this ora-
cle and so on. The idea behind finding counterparts of conscious behaviour of
operating TMs is based on the following basic observations

A. Consciousness reflects self-orientation and self-understanding of a system as
being in the random outer environment.

B. The environment acts on the system by random stimuli.
C. The stimuli can change the system and the changes are assimilated by it.
D. The system understands the changes and then the assimilated stimuli are no

longer random or alien.
E. The effect of the stimuli on the system can be more focused and then it means

a stress or it can be less focused and then it means a satisfaction. Stress
and satisfaction are understood as two basic emotions. They can change
the system and the changes are assimilated by it, too. They are no longer
random, as well.

We try to find canonical and formal counterparts of the above points in the realm
of calculational processes within TMs. First, we need to understand what can be
taken as outer environment for any TM. The point is that TM is an arithmetical
concept, but when for higher Turing classes TM extends Peano arithmetic (PA)
in a sense, o-TMs produce also independent of PA axioms functions. That is why
we propose to consider any o-TM as naturally embedded in the axiomatic ZFC
theory. However, to reflect randomness of the outer stimuli coming from ZFC we
propose to base our consideration on the Martin Löf notion of randomness, or
more precisely, on a weaker its form, i.e. Solovay generic randomness of infinite
binary {0, 1} sequences, e.g. [3]. This Solovay randomness is a ‘miniaturisation’
to arithmetic of the broader concept of randomness genericity in ZFC [3]. This
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extended to ZFC notion of randomness has been introduced also by Solovay and
is known as a forcing in set theory, which we have briefly discussed in the previ-
ous section. This last we call a ZFC-randomness and it is the proper notion for
our external to the TM environment. Thus concluding, we are choosing ZFC ax-
iomatic set theory as a formal environment for o-TMs. But this is merely the first
approximation since PA independent statements can be also ZFC independent:
ZFC does not prove or disprove them but they and their negations are rather
consistent with ZFC. This last statement means that there is a model of ZFC
where p is true and the other model where ¬p is true, and both models have all
provable in ZFC propositions as their true statements. That is why the method
of forcing is especially well-suited for such situations. But if so, we should extend
the ZFC axiomatic environment over models of ZFC, where their difference is
the valid ingredient of the approach. This is precisely what we are doing when
searching for the proper formal external to the TM environment.

Definition 4. o-TM interacting with the external ZFC environment, (o-TM)M ,
is the ordinary o-TM defined in a standard transitive model M of ZFC.

Remark 1. Since ZFC interprets PA, so the constructions of TM are expressible
in models of ZFC. The model M above is not specified at this place; one can
take as M some countable transitive model (CTM) or V – the entire universe of
sets, or some internal model, or others. We will discuss briefly the distinctions
between the choices in what follows.

Remark 2. Given a ZFC model M , it is generally possible to add new real num-
bers to it. In the case of a CTM M one can add even a continuum of many
different reals by nontrivial forcings from the outside of M . This generally fol-
lows from the relation between reals in V (let it be R) and the reals in M :
RM ⊂ R and |RM | = ω in V . The Remark 1 below explains the definition which
follows.

Remark 3. TMs in different standard transitive models of ZFC with the standard
natural numbers object are equivalent in the sense that PA + ZFC are equivalent
in the models. The nonequivalent inputs, which extend the models and Turing
computability or ZFC, can appear in oracles.

Definition 5. The external ZFC environment interacts with (o-TM)M by adding
reals into the oracles or by non-generic oracles.

Let N be the universe of sets (e.g. CTM) for (o-TM)N and M for (o-TM)M . If
N is a ground model for M , i.e. N [s] = M for generic s, we say N is the shrinked
version of M due to the stimuli rs ∈ M ⊂ M [r]. Similarly, M [p] is the extended
version of M due to the stimuli p generic for M . Then

Definition 6. rs is a stress stimuli for (o-TM)M and p is the satisfaction stimuli
for (o-TM)M . The resulting states of (o-TM)M , i.e. N and M [r] are called stress
and satisfaction states respectively. The M resulting in M (without nontrivial
changes) means a neutral state, see [13].
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Remark 4. Note that given two different (o-TM)M1
= TM1 and (o-TM)M2

=
TM2, their ‘social relations’ can be also given in terms of the interactions of the
external environment, since the part of this is each TM with respect to the other.
In particular TMs could react on the emotions each to the other by oracles.

The reaction of (o-TM)M can be neutral (no reaction) or active, i.e. the
oracle AM becomes extended by reals in the extended by forcing model M [r],
i.e. AM [r]. Thus, AM [r] contains generic reals.

Now we can confront the oracle TM, interacting with the external domain
with the conditions A. – E. from the beginning of this section.

Theorem 1. Let M → M [r] be the random forcing, adding the real r to M .
There is a canonical formal way in which (o-TM)M fulfils conditions A. – E.

Proof. Regarding A. that (o-TM)M reflects ‘self-orientation and self-understand-
ing of itself as being in the random outer environment’. This is in terms of
Turing machines augmented by the external interaction with the environment
as in Definition 5. ‘Understanding’ by TM is due to the ZFC, realised in the
model M , where there are in use by TM internal to M real numbers, RM . So
the space of states of this TM includes also RM . A real r ∈ M [r] is not in M , but
it will be inserted into the oracle. It is random for M by the forcing and since it
is not predictable by M itself (i.e. which random real it will be). At this stage,
M thinks there are all real numbers in M (according to understanding given by
ZFC). After r is included into the oracle, TM assimilates it and changes its state
to M [r] so thus TM now considers r as valid real number since RM ⊊ RM [r] ⊂
R. Regarding self-orientation, this is also connected with assimilating external
environmental reals as parameterising the external space. We will explain it in
the Example below.

Regarding B., this is precisely stated in Definition 5.
Regarding C., the assimilation property has been already explained above as

adding random r to M . The change of the state follows as M → M [r] and the
state of TM after assimilation is M [r].

Regarding D. that TM ‘understands the changes and then the assimilated
stimuli are no longer random or alien’, it has been already indicated at A. above,
where understanding has been given by the process (following the change of the
state of TM) from ZFCM to ZFCM [r]. When M is in the state M [r], r is no
longer random (still there can be new random reals r′ ∈ R to M [r], r′ /∈ M [r]
and r′ ∈ M [r][r′]).

Regarding E., the stimuli of ‘moderate focus’ (a satisfaction) effects the ran-
dom forcing extension M → M [r] while this of ‘high focus’ (a stress) results
in taking a ground model N for M , i.e. N [r] = M , and the stimuli is not ab-
sorbed by N . The satisfaction is connected with the expansion and extension
of the model while stress with the shrinking of it (see the discussion about the
multiverse in the end of this section).

One could wonder whether the external stimuli which can be of arbitrary high
degree of randomness can be assimilated by our TM. Let σ ∈ 2ω be an arbitrary
(of arbitrary high degree of algorithmic ML randomness) subset of N in V .
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Proposition 1. For any σ as above, there exists (o-TM)M with the M -random
r ∈ M [r] in the oracle which can reflect the degree of randomness of σ.

Proof. This is based on fundamental facts from algorithmic randomness. First,
randomness in arithmetic is the instance of ZFC Solovay forcing when ‘minia-
turised’ to PA [3]. It means that we make the forcing procedure in PA theory
without bothering of ZFC properties of the sequences σ ∈ 2ω. Any ML 1-random
binary sequence σ1 omits the Σ0

1 subsets of 2ω of arbitrary small Lebesgue mea-
sure (ML test). From the other side, given the random real r with respect to
ZFC model M , r omits all measure zero subsets of (2ω)M which means that such
r is also arithmetically 1-random with respect to M . Thus, knowing r be generic
random in M , it is 1-random with respect to the pair (M,M [r]) (r /∈ M). Given
higher n > 1 ML random σn, it omits every subset of 2ω of arbitrary small mea-
sure and thus a M -random r omits every measure zero subset of 2ω coded in M .
This last certainly omits every n-arithmetic subset of reals with zero measure in
M ; thus, such a sequence is n ML random with respect to the pair (M,M [r]).
So, Solovay generic r can indeed reflect in the pair (M,M [r]) the arbitrary high
degree of randomness.

Remark 5. Assuming that M be the so-called ω model of ZFC, i.e. a transitive
standard one with the standard natural numbers object N, one obtains the min-
imal ZFC driven discrepancies between TM in M and in V . The discrepancies
can be valuable by themselves, however, we do not delve in it here.

Remark 6. The above proposition works as far as there exists the generic filter
of the Boolean algebra B in M . Otherwise r ∈ M and it can not omit all
measure zero subsets of 2ω. It is known that this is always the case (generic r
exists) for countable transitive models M . However, in the universe of sets V
there does not exist any generic ultrafilter, hence random r as well. The usual
solution is to build the Boolean model V B in V , with the canonical embeddings
V ⊂ V B ⊂ V , and prove in V B that with the value 1 there exists random real
r (hence, a generic ultrafilter). This r again omits all measure-0 subsets of R in
V B with the value 1. Thus, we can assume that a random real r exists in M
and V and it is n-random for n ∈ N. In the multiverse approach – which will
be discussed below – there is the family of models closed on the extensions and
taking ground models so thus generic random rs always exist for the models.

The importance of the Proposition 1 is that (o-TM)M can assimilate arbitrary
random incomes which appear in the oracle by the response to the external
stimuli from V . After the assimilation the final state of TM is externally modified
such that it is TM in M [r] and this r is not any longer random in M [r]. The
process how TM undergoes the changes and perceives them (refers to) from the
new state is very important and requires a deeper clarification. Let us augment
the Definitions 2 and 4 as

The state space Q for (o-TM)M contains the symbols for the forcing ex-
tensions of M , i.e. |1| for M [r] and |0| for M . Whenever any change
of M does not occur (trivial forcing, no external stimuli), the state of
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TM remains unaltered, i.e. M , and the state of TM is |0|. Thus, if the
nontrivial forcing adding r into the oracle took place the state is recog-
nised as |1|. The |0| state is assigned also to the shrinking model M to
N , since no generic r is added.

Example 1 (The modification of TM). Let M be a countable transitive standard
model of ZFC with the standard natural numbers object. All ZFC provable
statements holds true in M , but also Peano arithmetic is derivable from ZFC,
so that in M there holds true the ZFC arithmetic statements. Let the external
to the TM 3-dimensional spatial domain be parameterised by reals R ∈ V , so
the spatial external domains U are (open or not) subsets of R3. R contains both,
reals RM from a general ground model M and reals which are not in M . Among
them there are generic reals with respect to all possible random forcings over M
(and for other forcings of course) and new reals which are not generic and are
not in M . The spatial domain, where internal TM acts (from the point of view of
TM), is parameterised by R3

M . From the outside (from the V point of view), RM

is countable, though from the M point of view, M contains all reals. However,
the possible generic reals (with respect to various random forcing extensions) is
continuum many from the external point of view, so the probability to find a
generic real in R is much higher than for nongeneric. Let the external stimuli be
generated in V and represented by some generic to the M real r. The interaction
of TM in M with this stimuli leads to the overwriting on the oracle tape the
binary representation of r. This r is not in M , however, the TM state is fixed to
|1| and TM after the entire process is internal to the forcing extension M [r]. At
this final stage, r is no longer random in M [r]. The assimilation of the external
random stimuli is completed. By the same process the spatial orientation can
now be gained by identifying the stimuli r with the point corresponding to the
external parameterisation.

This is a quite nontrivial task to decide for TM whether its actual state is |0|
or |1|. The reason is that ZFC and PA are theories in the first-order language
and as so their provability power does not allow for ‘seeing’ the set models of the
theories (otherwise they would prove their consistency). Moreover for a CTM
M [r] this is always the ground model for a subsequent random forcing leading
to M [r][s] and so on. Still, we can assume that the interaction with the external
environment gives the information about the state, e.g. a random r for M being
assimilated by the oracle of TM loses its randomness and indicates the state
of TM is now |1|. Another possibility is to refer to general results concerning a
definability of the ground model M in the extension M [r] (e.g. [5]). We do not
elaborate on this important issue here but rather it will be addressed elsewhere.
Let us resume this as: (o-TM)M is in the |1| state means that the oracle has
been just added (in the last step) as a random real r coming from the external
stimuli and there exists a model of ZFC N such that N [r] = M . (o-TM)M is in
the |0| state meaning that in the last step there is no random r extending the
oracle.

Given introduced TM as carrying some basic features of conscious-like be-
haviour, we would like to see this phenomenon more broadly. Especially, are



Turing Machines as conscious computing machines 9

there certain formal counterparts, already at this very basic level, which would
indicate group- or ‘social-like’ activities of several such defined TMs? Again,
guiding principles come from studying models of ZFC in this context.

As follows from the discussion above, the internal (o-TM)M to M carries
among its states the information about actual random forcing extensions M →
M [r]. However, for CTMs ‘to be extended by a random forcing’ is generic, i.e.
it is always possible to make yet another such extension starting from M [r] and
this seems to be a fundamental feature of TMs. This phenomenon is deeply
rooted in the foundations of set theory. One approach to set theory is based on
a distinguished universe of sets, like V , which is the class containing all sets, the
other approach is a set theory without the specific choice of the basic universe of
sets. The first will be marked as U and the second as MV – multiverse, in what
follows. Given a CTM model M , its multiverse is the family of models containing
M closed with respect to taking all forcing extensions and all ground models of
its members. The concept has appeared as very fruitful (e.g. [6]) and it has been
shown leads to different truths values for set theory statements which can be
proved in V and in all models in MV (e.g. the continuum hypothesis is true in
the generalized to inner models MV [7]). The point is that the MV approach
is based on the scattered truth concept depending on models of ZFC. The U
approach is based on the centralised truth with respect to the distinguished
universum of sets. The former one is more close to the decentralised nets point
of view (scattered notion of truth) and this is attractive also for TMs interacting
with the external environment and interacting with other TMs in the net.

In the context of (o-TM)M let M be a CTM of ZFC and this TM changes the
models along with the external random stimuli and the extension adapts this
TM to the new random condition. The state space for such TM contains the
positioning of TM in the random MV, rMV, for M . In fact this positioning is
merely local, i.e. the actual pairs (N,N [r]) enter the game for the current state
of TM. We do not require that TM is capable for any identification of models N
in the entire structure rMV. Still rMV represents the space of possible paths for
(o-TM)M when it interacts with the environment. From the perspective of such
TM it does not know about possible external V , rather rMV creates the entire
‘universe’ of sets. Quite similar as MV replaces a single universe of sets. Taking
rMV and V simultaneously and allowing for the interactions is the place where
conscious phenomena can enter the stage in the model presented here.

Now given several (o-TM)Mi
, i = 1, 2 . . . and taking two of them, it can

happen that their momentary models coincide, Mi = Mk or not. More generally
there can exist (or can not) a model Mij containing both Mi,Mj as submodels.
In general zig-zag moves (taking extensions or grounds) within the structure
rMV leads to building the entire net of connections between states of Mi and
Mj . Another factor in creating nets is the nonamalgamation property, i.e. two
forcing extensions of a CTM model are not submodels of a common model of
the same hight (e.g. [8]).

The power of oracle TM computability can be also directly seen in the case
of forcing [9]. It has been proved that for the oracle, Gr0, which would be the
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elementary graph of M (the set of true ZF statements in M) plus the forcing
partial order P inM , TMGr0 computes the forcing extensionM [r]. Which indeed
means that building the connections between TMs by forcing, inherently relies
on the oracle Turing computability. More precise understanding of the impact
of the above formal elements on true functioning of TM or nets of TMs requires
much further studies also conceptual in the foundations of science.

4 Discussion

We have introduced the Turing machine interacting with the external environ-
ment, and shown formal counterparts which could be related to, if not underlie,
the conscious behaviour of the real systems in our world. ‘Exterior to TM’ means
not only as situated in different spatial regions, but also separated by different
mathematics. We have shown that when TM lives in the set-theoretic world,
based on the multiverse paradigm, and it is confronted with the external envi-
ronment organised by the single set theoretic universe V , then the contact region
of both may be the carrier of certain phenomena, allowing for developing con-
scious relations to the world. We think, though did not present a full justification
for it here, that the structure is universal (rooted in foundations of mathematics)
also for systems in real world showing conscious reactions.

The situation where one pays a bigger attention to forcing relations than to
sets themselves, resembles to some degree the replacing objects by arrows – mor-
phisms in category theory (cf. [10, 12]). This kind of thinking with the priority
of ‘forcings over sets’ became fruitful also in the context of certain fundamental
problems in physics (e.g. [11, 4]). This certainly requires more thorough studies
and effort and partial results will be a topic for our forthcoming publication.

Also, the case of living conscious organisms could be approached from the
proposed here perspective, even though it looks very simplified at first sight.
One option is to introduce the structure of interacting layers. An extension of
the formalism over emotions or various social phenomena is the matter of further
work. Anyway one can note that the ‘random’ nature of some social phenomena
can be embedded in the system presented here where randomness is coded for-
mally. This is in the sharp opposition to certain previous misconceptions, like
considering consciousness as a formal computational model of self-reference and
claiming that formal methods would not allow the embedding.
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